Simplification of Exponents and Power


 
 
Concept Explanation
 

Simplification of Exponents and Power

To simplify the exponents, we have some laws. These laws together can be used to covert exponent in the simplest form.

1. a^{m}times a^{n}=a^{m+n}

2.  frac{a^{m}}{a^{n}}=a^{m-n}

3. frac{1}{a^{m}}=a^{-m}

4. frac{a^{m}}{a^{n}}=left ( frac{a}{b} right )^{m}

5. left ( a^{m} right )^{n}=a^{mn}=left ( a^{n} right )^{m}

.... (More Text Available, Login?)
Sample Questions
(More Questions for each concept available in Login)
Question : 1

If a= 2 and b = 3, the find the values of the following:left(frac{a}{b}+frac{b}{a}right)^a

Right Option : A
View Explanation
Explanation
Question : 2

Number of prime factors in   large (216)^frac{3}{5}X(2500)^frac{2}{5}X(300)^frac{1}{5}     is __________________.

Right Option : D
View Explanation
Explanation
Question : 3

Match the following provided that a and b are any rational numbers different from zero and x, y are any rational numbers.

List I(Terms With Same Base Different Exponents) List-â…¡ (Uses Of Basic Exponent Rule)
(A) (a^x)^y    (i) a^{x-y}
(B) a^x÷ a^y (ii) a^{xy}
(C) a^x X a^y    (iii) a^{x+y}
Right Option : A
View Explanation
Explanation
Chapters
Content / Category
Class / Course
 
 
Related Videos
Language - English
Language - English
Language - English

Language - English
Language - English
Language - English

Language - English


Students / Parents Reviews [10]